Đề kiểm tra học kì II môn Toán Lớp 10 - Trường TH, THCS và THPT Vĩnh Ký - Năm học 2015-2016 (Có đáp án)
Bài 4 (2 điểm) Trong mặt phẳng với hệ tọa độ, cho các điểm .
a) Viết phương trình đường tròn (C) đi qua ba điểm M , N , P.
b) Gọi lần lượt là các tiếp tuyến của đường tròn (C) tại hai điểm M, N và S là giao điểm của với . Tìm toạ độ điểm K là tâm đường tròn ngoại tiếp của tam giác SMN?
Bạn đang xem tài liệu "Đề kiểm tra học kì II môn Toán Lớp 10 - Trường TH, THCS và THPT Vĩnh Ký - Năm học 2015-2016 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_kiem_tra_hoc_ki_ii_mon_toan_lop_10_truong_th_thcs_va_thpt.docx
Nội dung text: Đề kiểm tra học kì II môn Toán Lớp 10 - Trường TH, THCS và THPT Vĩnh Ký - Năm học 2015-2016 (Có đáp án)
- Trường TH, THCS và THPT ĐỀ KT HỌC KỲ II (2015 – 2016) TRƯƠNG VĨNH KÝ Ngày: 20/ 4/ 2016 MÔN: TOÁN KHỐI: 10 THỜI GIAN: 90 phút ĐỀ A Bài 1 (2 điểm)Giải các phương trình: a) 3x2 x 1 2x 1 b) 2x2 x 3 9 2x2 x Bài 2 (2 điểm) Giải các bất phương trình: a) 3x 1 x2 2x 8 0 b) x2 x 6 8 x2 Bài 3 (2 điểm) 3 a) Cho: sin với Tính: cos và sin 2 . 5 2 b) Chứng minh đẳng thức : 2sin x 2 cos x 1 tan x . 4 Bài 4 (2 điểm) Trong mặt phẳng với hệ tọa độOxy , cho các điểm M 1; 3 , N 1;2 , P 5;2 . a) Viết phương trình đường tròn (C) đi qua ba điểm M , N , P. b) Gọi d1 , d2 lần lượt là các tiếp tuyến của đường tròn (C) tại hai điểm M, N và S là giao điểm của d1 với d2 . Tìm toạ độ điểm K là tâm đường tròn ngoại tiếp của tam giác SMN? x2 y2 Bài 5 (1 điểm) Trong mặt phẳng với hệ tọa độOxy ,cho Elip E : 1.Hãy tìm tất cả 9 4 các yếu tố của (E) ? sin 3x 2sin x sin 2x Bài 6 (1 điểm) Rút gọn biểu thức : M . 3sin2 x cos2 x 2cos x HẾT
- ĐÁP ÁN TOÁN 10 -HỌC KỲ 2 - 2015 – 2016 – ĐỀ A BÀI NỘI DUNG ĐIỂM 1a Giải PT : a) 3x2 x 1 2x 1 1 2x 1 0 x 3x2 x 1 2x 1 0.25x2 2 2 2 3x x 1 2x 1 2 x 3x 2 0 1 x 2 x 1 x 2 0.25x2 x 1 x 2 1b Giải PTb) 2x2 x 3 9 2x2 x Đặt t 2x2 x pt t 3 9 t t 6 0.25x2 3 Với t = 6 2x2 x 6 x 2 x 0.25x2 2 2a Giải BPT a) 3x 1 x2 2x 8 0 1 0.25 x2 2x 8 0 x 2 x 4 ; 3x 1 0 x 3 BXD: Đúng dấu một hạng tử + Đúng dấu f(x) 0.25x2 1 Tập nghiệm: S 4; 2; 0.25 3 2b Giải BPTb) x2 x 6 8 x2 x2 x 6 0 2 x 3 0.5 x2 x 6 8 x2 2 x 2 2 2 0.25x2 x x 6 8 x x 2 3 Cho: sin với Tính : cos và sin 2 3a 5 2 16 4 0.25x2 cos2 1 sin2 cos do 25 5 2 24 sin 2 2sin cos 0.25x2 25 3b Chứng minh đẳng thức : 2sin x 2 cos x 1 tan x 4 0.25x2 VT 2 sin x cos cos xsin 2 sin x cos x 4 4 sin x VP 2 cos x 1 2 cos x sin x VT = VP . Suy ra đpcm 0.25x2 cos x 4a Viết PT đường tròn đi qua 3 điểm M 1; 3 ; N 1;2 ; P 5;2 Gọi ( C ) : x2 y2 2ax 2by c 0 0.25 1 9 2a 6b c 0 Vì M ,N , P nằm trên ( C) nên ta có hệ 25 4 10a 4b c 0 0.25 1 4 2a 4b c 0 1 : a 3,b ,c 1 C : x2 y2 6x y 1 0 0.25x2 2 4b Tìm toạ độ điểm K là tâm đường tròn ngoại tiếp của tam giác SMN?
- 1 0.25 .Ta có tâm của ( C) là I 3; ; d1 MI ; d2 NI 2 5 0.25 d1 : qua M 1; 3 và nhận MI 2; làm VTPT nên d1 : 4x 5y 11 0 2 5 d2 : qua N 5;2 và nhận NI 2; làm VTPT nên d2 : 4x 5y 6 0 2 5 17 d1 d2 S S ; 0.25 8 10 29 3 Đường tròn (SMN) có đường kính là IS nên K là trung điểm IS Vậy K ; 16 5 0.25 x2 y2 E : 1 .Hãy tìm tất cả các yếu tố của (E) ? 5 9 4 x2 y2 E : 1 a 3 ;b 2 ;c 5 9 4 0.25x2 Tiêu điểm Tiêu cự: 2 5 F1 5;0 ; F2 5;0 0.25 Các đỉnh A 3;0 ; A 3;0 ;B 0; 2 ;B 0;2 ; Độ dài trục lớn :6 ; trục bé :4 1 2 1 2 0.25 5 Tâm sai e 3 0.25 sin 3x 2sin x sin 2x Rút gọn M 6 3sin2 x cos2 x 2cos x sin 3x 2sin x sin 2x (sin 3x sin x) sin x sin 2x M = 3sin2 x cos2 x 2cos x (2sin2x 2cos2 x) sin2 x cos2 x 2cos x 0.25x2 2cos 2xsin x sin x 2sin x cos x 0.25 2cos 2x 1 2cos x sin x 2cos 2x 1 sin x 2cos 2x 1 0.25 sin x sin x 0