Đề kiểm tra học kì II môn Toán Lớp 10 - Trường THPT Chu Văn An - Năm học 2017-2018 (Có đáp án)

Câu 5 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I. Gọi M là
điểm đối xứng của D qua C. Gọi H, K lần lượt là hình chiếu vuông góc của C và D trên đường
thẳng AM. Biết K 1;1, đỉnh B thuộc đường thẳng d : 5x 3y 10  0 và đường thẳng HI có
phương trình 3x  y 1  0. Tìm tọa độ đỉnh B.
pdf 4 trang Tú Anh 23/03/2024 1660
Bạn đang xem tài liệu "Đề kiểm tra học kì II môn Toán Lớp 10 - Trường THPT Chu Văn An - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_kiem_tra_hoc_ki_ii_mon_toan_lop_10_truong_thpt_chu_van_an.pdf

Nội dung text: Đề kiểm tra học kì II môn Toán Lớp 10 - Trường THPT Chu Văn An - Năm học 2017-2018 (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ THI HỌC KÌ II NĂM HỌC 2017-2018 TRƯỜNG THPT CHU VĂN AN Môn: TOÁN - Lớp 10 Buổi thi: Chiều ngày 26 tháng 04 năm 2018 ĐỀ SỐ 1 Thời gian làm bài: 90 phút, không kể thời gian phát đề (Đề thi gồm 01 trang) 2 Câu 1 (2,0 điểm). Cho bất phương trình mxmx 2210 (với m là tham số). a) Giải bất phương trình khi m 2. b) Tìm m để bất phương trình nghiệm đúng với mọi x . Câu 2 (2,5 điểm). Giải các bất phương trình và phương trình sau a) xxx22 1; b) 2658;xxx 2 c) xxxx 24 22 51. Câu 3 (2,5 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng :270xy và điểm I 2; 4 . a) Viết phương trình của đường thẳng d đi qua I và song song với đường thẳng . b) Viết phương trình đường tròn có tâm I và tiếp xúc với đường thẳng . c) Tìm tọa độ điểm M thuộc trục tung sao cho dM(,) 5. Câu 4 (2,0 điểm). 2 a) Cho sin , ; . Tính cos . 32 4 1sin2 x b) Chứng minh rằng tan x , với giả thiết các biểu thức có nghĩa. 4cos2x Câu 5 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I. Gọi M là điểm đối xứng của D qua C. Gọi HK, lần lượt là hình chiếu vuông góc của C và D trên đường thẳng AM. Biết K 1;1 , đỉnh B thuộc đường thẳng dx :5 3 y 10 0 và đường thẳng HI có phương trình3xy 1 0. Tìm tọa độ đỉnh B. Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ; Số báo danh: .
  2. ĐÁP ÁN ĐỀ THI HỌC KỲ 1 – LỚP 10 – Năm học 2017 -2018 Nội dung Điểm Câu 1 2 1.1 m = 2 4410xx2 0,25 (1 đ) 1 0,5 x 2 1 0,25 Vậy, tập nghiệm S \  2 1.2 1 0.25 m 2410 x x . Loai (1 đ) 4 m 2 , bpt nghiệm đúng với  x 0.75 am 02 m 20 0, 25 0, 25 1m 2 0, 25 2 012 mm 20 m Câu 2 2,5 22 2.1 xxx22 11 xx 2 x 2 0.25 (1 đ) 12xxx 2 10 0.25 1 0,5 x 2 2.2 xx2 650 1 (1 đ) xx2 6 5 82 x 82 x 0 0,25 2 2 xx6582 x 15 x 15 x 23 x x 40,25 5 0, 25 1x 3 0, 25 2 x 3 538690xx x 4 2.3 xxxx 24 22 51 0,25 (0,5 đ) xxxx21 4 1 22 5 3 xx 33 xx32 1 0 ĐK: 24 x xx 21 4 1 11 xx3210 xx 21 4 1 x 30 11 210*x xx 21 4 1 11 0.25 Lập luận để với  x 2; 4 thì 210x xx 21 4 1 Nên pt (*) vô nghiệm và pt có nghiệm duy nhất x 3 Câu 3 2,5
  3.   3.1 0,25 có VTPT nVTCPu 1; 2 2;1 (1 đ)  0,25 d || d có VTCPud 2;1 , mà I (2;4) x 22t 0.5 PTTS của d: yt 4 3.2 3 1.0 (1 đ) (C) tiếp xúc R dI(, ) (0,25) R (0,25) 5 229 Phương trình (C) : xy 24 (0,5) 5 3.3 0,25 Gọi My 0;o . (0,5 đ) 27y dM(,) 5 o 5 5 0,25 yo 6 M 0;6 y 1 o M 0;1 Câu 4 2 (2 đ) 4.1 0,5 (1 đ) ;cos0 2 55 cos22 1 sin 0,25 cos 0,25 93 0,5 cos cos cos sin sin 0, 25 444 10 2 2 0, 25 6 4.2 1 2sinxcox . s (c ox s sin x )2 co sx sin x 1,0 (1 đ) VP 0, 25 (0.25) (0, 25); cos22xx sin (cos xxcxx sin )( os sin ) cxx os sin 1tanx co sxsinx tan x (0,25) 41tanxossin cx x Câu 5 (1 đ) + Gọi QKIDH  , chứng minh được A B K tứ giác KBHQ là hình vuông. (0,25) + Do I là trung điểm của KQ nên H d(, B IH ) 2( d K , IH ) 10. (0,25) I 10 3t + Gọi B ,td , từ đó giải Q M 5 D C phương trình dBIH(; ) 10 tìm được 15 17 15 t B ; 4 44 (0,25) 85 43 85 t B ; 4 44 + Do K và B nằm cùng phía đối với 17 15 đường thẳng HI nên B ; . 0,25) 44