Ôn tập Toán Lớp 4 - Các dạng toán tiểu học thường gặp

Dạng 1 : Số chẵn, số lẻ, bài toán xét chữ số tận cùng của một số

* Kiến thức cần nhớ:

- Chữ số tận cùng của 1 tổng bằng chữ số tận cùng của tổng các chữ số hàng đơn vị của các số hạng trong tổng ấy.

- Chữ số tận cùng của 1 tích bằng chữ số tận cùng của tích các chữ số hàng đơn vị của các thừa số trong tích ấy.

doc 129 trang Tú Anh 29/03/2024 260
Bạn đang xem 20 trang mẫu của tài liệu "Ôn tập Toán Lớp 4 - Các dạng toán tiểu học thường gặp", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docon_tap_toan_lop_4_cac_dang_toan_tieu_hoc_thuong_gap.doc

Nội dung text: Ôn tập Toán Lớp 4 - Các dạng toán tiểu học thường gặp

  1. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Một số bài tập Toán tiểu học là tài liệu học tập môn Toán hay dành cho thầy cô và các em học sinh tham khảo. Tài liệu này tập hợp các bài toán từ cơ bản đến nâng cao phần số học và hình học trong chương trình Toán 4, 5 hi vọng giúp các em củng cố lại kiến thức, bồi dưỡng học sinh khá giỏi hiệu quả. Mời các bạn tham khảo. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP . Dạng 1 : Số chẵn, số lẻ, bài toán xét chữ số tận cùng của một số * Kiến thức cần nhớ: - Chữ số tận cùng của 1 tổng bằng chữ số tận cùng của tổng các chữ số hàng đơn vị của các số hạng trong tổng ấy. - Chữ số tận cùng của 1 tích bằng chữ số tận cùng của tích các chữ số hàng đơn vị của các thừa số trong tích ấy. - Tổng 1 + 2 + 3 + 4 + + 9 có chữ số tận cùng bằng 5. - Tích 1 x 3 x 5 x 7 x 9 có chữ số tận cùng bằng 5. - Tích a x a không thể có tận cùng bằng 2, 3, 7 hoặc 8. * Bài tập vận dụng: Bài 1: a) Nếu tổng của 2 số tự nhiên là 1 số lẻ, thì tích của chúng có thể là 1 số lẻ được không? b) Nếu tích của 2 số tự nhiên là 1 số lẻ, thì tổng của chúng có thể là 1 số lẻ được không? c) “Tổng” và “hiệu” hai số tự nhiên có thể là số chẵn, và số kia là lẻ được không? Giải: a)Tổng hai số tự nhiên là một số lẻ, như vậy tổng đó gồm 1 số chẵn và 1 số lẻ, do đó tích của chúng phải là 1 số chẵn (Không thể là một số lẻ được). b) Tích hai số tự nhiên là 1 số lẻ, như vậy tích đó gồm 2 thừa số đều là số lẻ, do đó tổng của chúng phải là 1 số chẵn(Không thể là một số lẻ được). 1
  2. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) c) Lấy “Tổng” cộng với “hiệu” ta được 2 lần số lớn, tức là được 1 số chẵn. Vậy “tổng” và “hiệu” phải là 2 số cùng chẵn hoặc cùng lẻ (Không thể 1 số là chẵn, số kia là lẻ được). Bài 2: Không cần làm tính, kiểm tra kết quả của phép tính sau đây đúng hay sai? a, 1783 + 9789 + 375 + 8001 + 2797 = 22744 b, 1872 + 786 + 3748 + 3718 = 10115. c, 5674 x 163 = 610783 Giải : a, Kết quả trên là sai vì tổng của 5 số lẻ là 1 số lẻ. b, Kết quả trên là sai vì tổng của các số chẵn là 1 số chẵn. c, Kết quả trên là sai vì tích của 1số chẵn với bất kỳ 1 số nào cũng là một số chẵn. Bài 3: Tìm 4 số tự nhiên liên tiếp có tích bằng 24 024 Giải : Ta thấy trong 4 số tự nhiên liên tiếp thì không có thừa số nào có chữ số tận cùng là 0; 5 vì như thế tích sẽ tận cùng là chữ số 0 (trái với bài toán) Do đó 4 số phải tìm chỉ có thể có chữ số tận cùng liên tiếp là 1, 2, 3, 4 và 6, 7, 8, 9 Ta có : 24 024 > 10 000 = 10 x 10 x 10 x 10 24 024 < 160 000 = 20 x 20 x 20 x 20 Nên tích của 4 số đó là : 11 x 12 x 13 x 14 hoặc 16 x 17 x 18 x 19 Có: 11 x 12 x 13 x 14 = 24 024 16 x 17 x 18 x 19 = 93 024. 2
  3. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Vậy 4 số phải tìm là : 11, 12, 13, 14. Bài 4: Có thể tìm được 2 số tự nhiên sao cho hiệu của chúng nhân với 18 được 1989 không? Giải : Ta thấy số nào nhân với số chẵn tích cũng là 1 số chẵn. 18 là số chẵn mà 1989 là số lẻ. Vì vậy không thể tìm được 2 số tự nhiên mà hiệu của chúng nhân với 18 được 1989. Bài 5 : Có thể tìm được 1 số tự nhiên nào đó nhân với chính nó rồi trừ đi 2 hay 3 hay 7, 8 lại được 1 số tròn chục hay không. Giải : Số trừ đi 2,3 hay 7,8 là số tròn chục thì phải có chữ số tận cùng là 2,3 hay 7 hoặc 8. Mà các số tự nhiên nhân với chính nó có các chữ số tận cùng là 0 ,1, 4, 5, 6, 9. Vì : 1 x 1 = 1 4 x 4 = 16 7 x 7 = 49 2 x 2 = 4 5 x 5 = 25 8 x 8 = 64 3 x3 = 9 6 x6 = 36 9 x 9 = 81 10 x10 = 100 Do vậy không thể tìm được số tự nhiên như thế. Bài 6: Có số tự nhiên nào nhân với chính nó được kết quả là một số viết bởi 6 chữ số 1 không? Giải : Gọi số phải tìm là A (A > 0) Ta có : A x A = 111 111 Vì 1 + 1 +1 + 1+ 1+ 1+ = 6 chia hết cho 3 nên 111 111 chia hết cho 3. 3
  4. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) 2000 – (600+300) = 1100 (m2) Vậy EG là: 1100 x 2 : 40 = 55 (m) Diện tích ABGE là : (55 + 40) x 30 : 2 = 1425 (m2) Diện tích EGCD là: (60 + 55) x 10 : 2 = 575 (m2) Bài 6: Cho hình thang ABCD có diện tích là 60m2 , điểm M, N, P, Q là điểm chính giữa của các cạnh AB, BC, CD, DA Tính diện tích tứ giác MNPQ. Giải : MQ kéo dài cắt DC tại F; MN kéo dài cắt DC tại E Ta có diện tích hình thang ABCD bằng diện tích tam giác FME Diện tích ∆ MPF =diện tích ∆ MPE (đáy bằng nhau, đường cao chung) Diện tích ∆ MNP = diện tích ∆NPE A M B (đáy MN = NE, đường cao chung) Diện tích ∆PMQ = diện tích ∆PQF (đáy QM= QF, đường cao chung) Q N Nên diện tích MNPQ = 1/2 diện tích ∆FME . Hay diện tích MNPQ =1/2 diện tích hình thangABCD và bằng F D P C E 60 : 2 = 30 (cm2) Đáp số: 30 cm2 Bài 7: Tìm diện tích của một hình thangbiết rằng nếu kéo dài đáy bé 2m về một phía thì ta được hình vuông có chu vi 24m. Giải: Theo bài ra hình thang vuông. Đáy A B 2 m M lớn bằng cạnh hình vuông AMCD và chiều cao hình thang cũng bằng cạnh hình vuông. Cạnh hình vuông AMCD là: 113
  5. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) 24 : 4 =6 (m) Đáy bé hình thang ABCDlà: 6 – 2 = 4(m) D C Diện tích hình thang ABCD là: (6 4)x6 = 30 (m2) Đáp số :30m2 2 Bài 8 : Cho hình thang ABCD có đáy bé AB bằng 18 cm, đáy lớn CD bằng 3/2 đáy bé AB. Trên AB lấy điểm M sao cho AM = 12 cm. Nối M với C. Tìm diện tích hình thang AMCD, biết diện tích hình thang ABCD hơn diện tích hình thang AMCD là 42 cm2. Giải : Đáy lớn hình thang ABCD là : A M B 18 x 3 = 27 (cm) 2 Độ dài đoạn MB là : 18 – 12 = 6 (cm) C D MB chính là đáy của ∆ MBC, chiều cao của ∆ MBC (cũng là chiều cao của hình thang AMCD) 42x2 = 14 (cm) 6 Diện tích hình thang AMCD là : (12 27)x14 = 273 (cm2) 2 Đáp số 273 cm2 4.Bài tập về nhà Bài 1 : Một thửa ruộng hình thang có trung bình cộng 2 đáy là 32 m. Nếu đáy lớn tăng 16 m, đáy nhỏ tăng 10 m thì diện tích thửa ruộng sẽ tăng thêm 130 m2. Tính diện tích thửa ruộng đó. Bài 2 : Cho hình thang ABCD có đáy nhỏ AB. Hai đường chéo AC, BD cắt nhau tại 0. Tính diện tích hình thang đó biết diẹn tích hình tam giácAOB là 15 cm2, diện tích tam giác BOC là 30 cm2. 114
  6. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Bài 3 : Một miếng đất hình thang có diện tích 705,5 m 2, đáy lớn hơn đáy bé 8 m, nếu đáy lớn được tăng thêm 6 m thì miếng đất có diện tích bằng 756,5 m 2. Tính độ dài mỗi đáy hình thang. Bài 4 : Trung bình cộng hai đáy của một thửa ruộng hình thang bằng 34 m. Nếu tăng đáy bé thêm 12 m thì diện tích thửa ruộng tăng thêm 114 m 2. Hãy tìm diện tích thửa ruộng. Bài 5 : Cho hình thang ABCD đáy AB = 30 cm và CD = 45 cm. AC và BD cắt nhau tại O. Cho biết diện tích tam giác OAB là 180 cm2. Hãy tính diện tích hình thang. Bài 6 : Cho hình thang ABCD, hai đáy AB và CD. Các cạnh bên AD và BC kéo dài cắt nhau ở K. Cho biết diện tích tam giác KCD gấp 1,5 lần diện tích tam giác KAC. Tính các cạnh đáy của hình thang đó nếu biết diện tích của hình thang là 375 cm2 và chiều cao của nó là 10 cm. III - CÁC BÀI TOÁN VỀ CẮT GHÉP HÌNH Bài 1 : Hãy chia một hình chữ nhật thành 4 hình tam giác có diện tích bằng nhau ? Giải : Xuất phát từ nhận xét : - Hai tam giác có cùng chiều cao và số đo của đáy bằng nhau thì bằng nhau. 115
  7. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) - Hai tam giác có chung đáy và số đo của đường cao bằng nhau thì diện tích bằng nhau. A B Ta giải bài toán trên . Trước hết ta kẻ đường chéo AC để hình chữ nhật thành hai tam giác códiện tích bằng nhau. C D Bây giờ ta chia mỗi tam giác ABC và ADC thành hai tam giác có diện tích bằng nhau. Như vậy ta được một lời giải của bài toán. Cách 1 Chọn AC làm đáy chung của 2 tam giác sẽ chia ra. Như vậy để được 2 tam A B giác bằng nhau có cùng đường cao hạ từ B (và từ D) xuống AC thì phải chia đáy AC thành 2 phần bằng nhau bởi O điểm O. Nối BO và DO ta được các tam C D giác ABO, BOC, COD và DOA thoả mãn các điều kiện của đề bài. Cách 2 Chọn 2 cạnh BC và AD làm đáy của 2 tam M giác sẽ chia ra. Như vậy các tam giác B C được chia ra từ tam giác ABC có chung đường cao AB cho nên ta phải chia đáy BC thành 2 phần có số đo bằng nhau bởi A N điểm M.Tương tự chia AD bởi điểm N. D Nối AM, CN ta được 4 tam giác ABM, AMC, CAN và CND thoả mãn điều kiện của đề bài 116
  8. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Cách 3 Chọn hai cạnh AB và CD làm đáy của tam B C giác sẽ chia ra. Như vậy các tam giác được chia từ tam giác ABC có chung P H đường cao CB thành 2 phần có số đo bằng A D nhau bởi điểm P. Tương tự ta chia CD thành 2 phần bởi điểm H. Nối CP và AH ta được 4 tam giác ACP, CPB, ADH, và AHC thoả mãn điều kiện đề bài. Cách 4 Phối hợp cách 1 và cách 2 như hình vẽ Ngoài ra còn có thể chia theo các cách khác. Bài 2 : Cho mảnh bìa hình tứ giác ABCD. Bằng một lần cắt (không nhấc kéo) hãy chia mảnh bìa đó thành hai phần có diện tích bằng nhau. Giải : Kẻ đường chéo BD. Bằng lập luận C như trong ví dụ 8, chọn điểm giữa O B của BD. Nối AO, CO. Ta cắt mảnh bìa theo nét vẽ chiều mũi tên sẽ được 2 mảnh bìa ABCO và ADCO thoả mãn O điều kiện của đề bài. A D 4. Bài tập về nhà 117
  9. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Bài 1 : Cho 1 mảnh bìa hình chữ nhật có chiều dài 9 cm và chiều rộng 4 cm. bằng 1 nhát cắt (không nhấc kéo) hãy chia mảnh bìa thành 2 mảnh để ghép lại được một hình vuông có cùng diện tích. Bài 2 : Hãy cắt một mảnh bìa hình chữ nhật thành hai mảnh để ghép lại ta được một hình thang có : a) đáy lớn gấp 3 lần đáy nhỏ ; b) Đáy lớn gấp 5 lần đáy nhỏ. Bài 3 : Hãy cắt một mảnh bìa hình thang thành các mảnh nhỏ để ghép lại ta được : a) Một tam giác b) Một hình thang c) Một hình chữ nhật Bài 4 : Cho hai mảnh bìa hình vuông. Hãy cắt hai mảnh bìa đó thành các mảnh nhỏ để ghép lại ta được một hình vuông. Bài 5 : Cho một miếng tôn hình chữ nhật có chiều dài gấp hai lần chiều rộng. hãy cắt miếng tôn đó để ghép lại được một miếng tôn hình vuông. IV - HÌNH TRÒN 3.1. Kiến thức cần nhớ : - Các công thức : C = d x 3,14 C = r x 2 x 3,14 S = r x r x 3,14 r = C : 3,14 : 2 - Hai hình tròn có bán kính (hoặc đường kính) gấp nhau bao nhiêu lần thì chu vi của chúng cũng gấp nhau bao nhiêu lần. - Hai hình tròn có tỉ số chu vi là k thì tỉ số bán kính (hoặc đường kính) bằng k thì tỉ số diện tích của chúng là k x k 118
  10. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) 3.2 Bài tập vận dụng Bài 1 : Tìm diện tích hình vuông biết diện tích hình tròn là 50,24 cm2. Gọi r là bán kính của hình tròn Diện tích của hình tròn là : A B r x r x 3,14 Theo bài ra ta có : r x r x 3,14 = 50,24 r x r = 16 r x r = 4 x 4 r = 4 D Số đo đoạn thẳng BD là : C 4 x 2 = 8 (cm) Diện tích tam giác ABD là : 8x4 = 16 (cm2) 2 Diện tích hình vuông ABCD là : 16 x 2 = 32 (cm2) Bài 2 : Một miếng bìa hình tròn có chu vi 37,68 cm. tính diện tích miếng bìa đó : Giải : Bán kính miếng bìa là : 37,68 : 3,14 : 2 = 6 (cm) Diện tích miếng bìa là : 6 x 6 x 3,14 = 113,04 (cm2) Đáp số 113,04 cm2 Bài 3 : Hình tròn A có chu vi 219,8 cm, hình tròn B có diện tích 113,04 cm2. Hình tròn nào có bán kính lớn hơn? Giải : 119
  11. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Bán kính hình tròn A là : 219,8 : 3,14 : 2 = 35 (cm) = 3,5 dm. Gọi r là bán kính hình tròn B ta có : r x r = 113,04 : 3,14 = 36 (dm) r = 6 dm Vì 6 > 3,5 nên bán kính hình tròn B lớn hơn bán kính hình tròn A Bài 4 : Biết tỉ số bán kính của 2 hình tròn là 3/4.Hãy tính tỉ số 2 chu vi, 2 diện tích của 2 hình tròn đó. Giải : Gọi r1 là bán kính của hình tròn thứ nhất, r2 là bán kính của hình tròn thứ hai Gọi C1 và S1 là chu vi và diện tích của hình tròn thứ nhất Gọi C2 và S2 là chu vi và diện tích của hình tròn thứ hai thì : C1 = 3,14xr1x2 = r1 = 3 C2 3,14x2xr2xr2 r2 4 Tỉ số chu vi hai đường tròn bằng 3/4 S1 = 3,14xr1xr2 = r1 x r1 = 3 x 3 = 9 S2 3,14xr2xr2 r2 r2 4 4 16 4. Bài tập về nhà Bài 1 : Cho hai hình tròn đồng tâm, hình tròn thứ nhất cóp chu vi 18,84 cm ; Hình tròn thứ hai có chu vi 31,2 cm. Hãy tính diện tích hình vành khuyên do hai hình tròn tạo thành. Bài 2 : Diện tích của 1 hình tròn sẽ thay đổi như thế nào nếu ta tăng bán kính của nó lên 3 lần. Bài 3 : Hai hình tròn có hiệu hai chu vi bằng 6,908 dm. Tìm hiệu 2 bán kính của hai hình tròn đó. 120
  12. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) V -DIỆN TÍCH XUNG QUANH, DIỆN TÍCH TOÀN PHẦN, THỂ TÍCH HÌNH HỘP CHỮ NHẬT, HÌNH LẬP PHƯƠNG, HÌNH TRỤ 3.1. Kiến thức cần nhớ : A – Hình hộp chữ nhật : Hình hộp chữ nhật có 6 mặt là các hình chữ nhật, có 3 kích thước là chiều dài a, chiều rộng b, chiều cao c. Sxq = Pmđ x h = (a + b) x 2 x c STP = Sxq + S2đ = Sxq + a + b x 2 V = a x b x c B – Hình lập phương Hình lập phương có 6 mặt là các hình vuông bằng nhau. Tất cả các cạnh của hình lập phương đều bằng nhau. Sxq = a x a x 4 STP = a x a x 6 V = a x a x a C – Hình trụ hình trụ có hai đáy là hai hình tròn bằng nhau Sxq = r x 2 x 3,14 x h STP = Sxq + r x r x 3,14 x 2 V = r x r x 3,14 x h 3.2. Bài tập vận dụng Bài 1 : Có 8 hình lập phương, mỗi hình có cạnh bằng 2 cm. Xếp 8 hình đó thành 1 hình lập phương lớn. Tìm diện tích xung quanh, dioện tích toàn phần và thể tích của hình lập phương lớn. Giải : 8 hình lập phương ta xếp thành hình lập phương lớn bao gồm có 2 tầng mỗi 121
  13. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) tầng có 4 hình lập phương nhỏ Cạnh của hình lập phương nhỏ là 2 nên cạnh của hình lập phương lớn là : 2 x 2 = 4 (cm) Diện tích xung quanh là : 4 x 4 x 4 = 64 (cm2) Diện tích toàn phần là : 4 x 4 x 6 = 96 (cm2) Thể tích là : 4 x 4 x 4 = 64 (cm2) Bài 2 : Có 27 hình lập phương, mỗi hình có thể tích 8 cm 3. Xếp 27 hình đó thành một hình lập phương lớn. hỏi hình lập phương lớn có cạnh là bao nhiêu? Giải : Ta có : 8 = 2 x 2 x 2 Vậy mỗi hình lập phương nhỏ có đáy bằng 2 cm. Xếp 27 hình lập phương nhỏ thành một hình lập phương lớn có 3 tầng mỗi tầng có 3 hàng, mỗi hàng có 3 hình lập phương nhỏ. Nên cạnh của hình lập phương lớn là : 2 x 3 = 6 (cm) Đáp số 6 cm Bài 3 : Một hình lập phương có diện tích xung quanh bằng 64 cm 2. Tính thể tích của hình lập phương đó. Giải : Diện tích một mặt của hình lập phương là : 64 : 4 = 16 (cm2) Ta thấy 16 = 4 x 4 cạnh của hình lập phương là 4 122
  14. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Thể tích của hình lập phương là : 4 x 4 x 4 = 64 (cm3) Đáp số 64 cm3 Bài 4 : Một bể chứa nước hình hộp chữ nhật, đo ở trong lòng bể thấy chiều dài bằng 2,5 m ; chiều rộng bằng 1,4 m ; chiều cao gấp 1,5 lần chiều rộng. Hỏi bể chứa đầy nước thì được bao nhiêu lít. Giải : Chiều cao của bể nước là : 1,4 x 1,5 = 2,1 (m) Thể tích bể nước là : 2,5 x 1,4 x 2,1 = 7,35 (m3) ta có : 7,35 m3 = 7350 dm3 = 7350 lít Đáp số 7350 lít Bài 5 : Một cái thùng hình hộp chữ nhật có đáy là hình vuông có chu vi là 20 dm. Người ta đổ vào thùng 150 lít dầu. Hỏi chiều cao của dầu trong thùng là bao nhiêu? Giải : Cạnh của đáy thùng là : 20 : 4 = 5 (dm) Diện tích đáy thùng là : 5 x 5 = 25 (dm2) Ta có : 150 lít = 150 dm3 Chiều cao của dầu trong thùng là : 150 : 25 = 6 (dm) Đáp số 6 dm. 123
  15. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Bài 6 : Một phiến đá hình hộp chữ nhật có chu vi đáy bằng 60 dm, chiều dài bằng 3/2 chiều rộng và chiều cao bằng 1/2 chiều dài. Phiến đá cân nặng4471,2 kg. Hỏi 1 dm3 đá nặng bao nhiêu ki lô gam? Giải : Nửa chu vi phiến đá là : 60 : 2 = 30 (dm) Chiều dài của phiến đá là : 30 : (3 + 2) x 3 = 18 (dm) Chiều rộng của phiến đá là : 30 – 18 = 12 (dm) Chiều cao của phiến đá là : 18 : 2 = 9 (dm) Thể tích của phiến đá là : 18 x 12 x 9 = 1944 (dm3) 1 dm3 đá nặng là : 4471,2 : 1944 = 2,3 (kg) đáp số 2,3 kg Bài 7: Một hình chữ nhật có chiều cao 6 dm. Nếu tăng chiều cao thêm 2 dm thì thể tích hộp tăng thêm 96 dm3. Tính thể tích hộp. Giải : Diện tích đáy của hộp chữ nhật là : 96 : 2 = 48 (dm2) Thể tích hộp chữ nhật là : 48 x 6 = 228 (dm3) Cách 2 6 dm so với 2 dm thì gấp : 6 : 2 = 3 (lần) 124
  16. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Phần tăng thêm và hình hộp chữ nhật có chung diện tích đáy và chiều cao hình hộp chữ nhật gấp 3 làan phần tăng thêm nên thể tích hình hộp chữ nhật cũng phải gấp 3 lần thể tích tăng thêm. vậy thể tích hình hộp chữ nhật là : 96 x 3 = 288 (dm3) Đáp số : 288 dm3 Bài 8 : Một căn phòng dài 8 m, rộng 6 m cao 5 m. Người ta muốn quét vôi trần nhà và 4 mặt tường trong phòng. Trên 4 mựt tường có 2 cửa ra vào mỗi cửa rộng 1,6 m cao 2,2 m và 4 cửa sổ, mỗi cửa sổ rộng 1,2 m cao 1,5 m. Tiền thuê quét vôi 1 mét vuồng hết 1500 đồng. Hỏi tiền công quét vôi căn phòng đó hết bao nhiêu ? Giải : Diện tích 4 mặt tường của căn phòng là : (9 + 6) x 2 x 5 = 150 (m2) Diện tích trần nhà là : 9 x 6m = 54 (m2) Diện tích 4 cửa sổ là : 1,2 x 1,5 x 4 = 7,2 (m2) Diện tích 2 cửa ra vào là : 2,2 x 1,6 x 2 = 7,04 (m2) Diện tích cần quét vôi là : (150 + 54) – (7,2 + 7,04) = 189,76 (m2) Tiền công mướn quét vôi là : 1500 x 189,76 = 284640 (đồng) Đáp số 284640 đồng 125
  17. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Bài 9 : Một phòng họp dài 8 m, rộng 5 m, cao 4 m. Hỏi phải mở rộng chiều dài ra thêm bao nhiêu để phgòng họp có thể chứa được 60 người và mỗi người có đủ 4,5 m2 không khí để đảm bảo sức khoẻ ? Giải : Thể tích của hội trường sau khi mở rộng là : 4,5 x 60 = 270 (m3) Diện tích mặt bên của hội trường là : 5 x 4 = 20 (m2) Chiều dài của hội trường sau khi mở rộng là : 270 : 20 = 13,5 (m) Chiều dài phải mở rộng thêm là : 13,5 – 8 = 5,5(m) Đáp số 5,5 m Bài 10 : Cái bể chứa nước nhà em có hình chữ nhật, đo trong lòng bể được chiều dài 1,5 m, chiều rộng là 1,2 m và chiều cao là 0,9 m. Bể đã hết nước, chị em vừa đổ vào bể 30 gánh nước mỗi gánh 45 lít. Hỏi mặt nước còn cách miệng bể bao nhiêu và cần đổ thêm bao nhiêu gánh nước nữa để đầy bể ? Giải : Số lít nước đã đổ vào bể là : 45 x 30 = 1350 (lít) = 1350 dm3 = m1,35 m3 Diện tích đáy bể là : 1,5 x 1,2 = 1,8 (m2) Mặt nước cách đáy bể là : 1,35 : 1,8 = 0,75 (m) Mặt nước trong bể cách miệng bể là : 0,9 – 0,75 = 0,15 (m) 126
  18. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Thể tích bể là : 1,8 x 0,9 = 1,62 (m3) = 1620 lít Số gánh nước cần đổ đầy bể là : 1620 : 45 = 36 (gánh) Để đầy bể cần đổ thêm là : 36 – 30 = 6 (gánh) Đáp số 0,15 m và 6 gánh. Bài 11 : Xếp 8 hình lập phương nhỏ có cạnh 4 cm thành một hình lập phương lớn rồi sơn tất cả các cạnh của hình lập phương lớn. Hỏi mỗi hình lập phương nhỏ có mấy mặt được sơn và diện tích được sơn của mỗi HLP nhỏ là bao nhiêu? Giải : Xếp 8 HLP nhỏ thành 1 HLP lớn gồm 2 tầng, mỗi tầng gồm 4 hình lập phương nhỏ, vì thế mỗi HLP nhỏ đều có 3 mặt được ghép với các hình lập phương khác. Các mặt được ghép không được sơn. Vì HLP có 6 mặt nên số mặt được sơn là : 6 – 3 = 3 (mặt) Diện tích một mặt của HLP nhỏ là : 4 x 4 = 16 (cm2) Diện tích mỗi HLP nhỏ được sơn là : 16 x 3 = 48 (cm2) Đáp số 48 cm2 Bài 12 : Người ta xẻ 1 khúc gỗ hình trụ dài 5 m có đường kính đáy 0,6 m thành 1 khối hình hộp chữ nhật có đáy là hình vuông và đường chéo của đáy bằng đường kính của khúc gỗ. Tính thể tích của 4 tấm bìa gỗ được xẻ ra? Giải : 127
  19. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Ta chia đáy của khúc gỗ HHCN thành 2 tam giác có diện tích bằng nhau. Mỗi tam giác có một cạnh đáy bằng đường kính của khúc gỗ và chiều cao của tam giác ứng với cạnh đáy đó bằng 0,6 : 2 = o,3 (m) Diện tích tam giác là : 0,6x0,3 = 0,09 (m2) 2 Diện tích của khúc gỗ HHCN là : 0,09 x 2 = 0,18 (m2) Thể tích khối gỗ HHCN là : 0,18 x 5 = 0,9 (m3) Thể tích khúc gỗ hình trụ là : 0,3 x 0,3 x 3,14 x 5 = 1,413 (m3) Thể tích 4 tấm được xẻ ra là : 1,413 – 0,9 = 0,513 (m3) Đáp số 0,513 m3 Bài 13 : Diện tích toàn phần 1 cái hộp không có nắp hình lập phương là 500 cm2. Tính cạnh cái hộp đó. Nếu tăng cạnh hộp này lên 2 lần thì diện tích toàn phần tăng lên mấy lần ? Giải : Diện tích 1 mặt là : 500 : 5 = 100 (cm2) Vì 100 = 10 x 10 nên cạnh HLP là 10 cm : Cạnh hộp khi tăng lên 2 lần là : 10 x 2 = 20 (cm) Diện tích toàn phần của hộp mới là : (20 x 20) x 5 = 2000 (cm2) So với trước diện tích toàn phần tăng số lần là : 2000 : 500 = 4 (lần) Đáp số 4 lần. 128
  20. CÁC DẠNG TOÁN TIỂU HỌC THƯỜNG GẶP (lớp 4,5.doc) Bài 14 : Tính thể tích hình lập phương biết diện tích toàn phần và diện tích xung quanh của hình đó là 128 cm2. Giải : Hiệu diện tích toàn phần và diện túch xung quanh bằng 2 lần diện tích đáy. Vậy diện tích đáy là: 128 : 2 = 64 (cm2) Vì 64 = 8 x 8 cạnh HLP là 8 cm : Thể tích hình lập phương là : 8 x 8 x 8 = 512 (cm3) Đáp số 512 cm3 4/ Bài tập về nhà : Bài 1 : Một HLP có diện tích toàn phần bằng 384 cm 2. Tính diện tích xung quanh và thể tích của hình lập phương đó . Bài 2 : Một cái bể HHCN chứa 1500 lít nước thì đầy bể, biết đáy bể có chu vi 8 m, chiều dài bằng 5/3 chiều rộng. Tính chiều cao của bể? Bài 3 : Người ta đào một cái giếng hình trụ sâu 6 m có chu vi đáy bằng 6,28 m, phần đất lấy lên từ giếng người ta đem đắp vào một cái sân hình chữ nhật có chiều dài 8 m, rộng 5 m. Hỏi sân được đắp thêm 1 lớp đất dày bao nhiêu? Bài 4 : Phải xếp bao nhiêu hình lập phương cạnh 1 cm để được 1 hình lập phương có diện tích toàn phần là 150 m2 Bài 5 : Một khúc gỗ hình hộp chữ nhật có kích thước : dài 3 dm, rộng 2,5 dm, cao 2 dm được sơn cả 6 mặt và đem cắt thành các khối hộp nhỏ có kích thước bằng dài 3 cm, rộng 2,5 cm, cao 2 cm làm đồ chơi cho trẻ em. Hỏi : Cắt được bao nhiêu khối hộp nhỏ (mạch cắt không đáng kể). Bài 6 : Hai vật thể có hình lập phương và cùng chất liệu nhưng kích thước gấp nhau 3 lần. Tổng khối lượng của 2 vật thể là 21 kg. Tính khối lượng mỗi vật thể . 129